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Reflection and transmission times through a linear potential is studied by using the
stationary phase method. The incident particle is described by a wave packet constructed
from a momentum distributionδ(k′ − k) highly concentrated around a fixed valuek.
The way the reflection and transmission times are calculated is similar to the way the
phase timeτϕ is defined for a rectangular potential.
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1. INTRODUCTION

The purpose of this paper is not to dive into the turbulent water of the con-
troversies that plague the subject of transversal or tunneling time through a bar-
rier. Very good and comprehensive papers that properly address this issue can
be found in the literature. Among them, we cite the review papers by Hauge
and Støvneng (1989), Landauer and Martin (1994), and, more recently, Muga and
Leavens (2000). Despite all the efforts made up to now, no consensus was achieved
yet on how to define and evaluate tunneling times.

By using the stationary phase method (Erd´elyi, 1956), we discuss the trans-
mission and reflection times of a particle of massm and energyE incident on a
linear Schottky kind potential barrier of maximum intensityV0 > E = h2k2/2m.
This problem is particularly interesting to researchers in fields like heterostructures
or multiple-quantum-well structures.

The particle is described by a wavepacket constructed at a distancex = −`
before the location of the potential. We take a Gaussian momentum distribution
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highly concentrated around a defined value ofk. This practice reduces considerably
the difficulties inherent to nonconcentrated momentum distributions.

The way to obtain the transmission and reflection times is similar to the
process to obtain the phase timeτϕ in de Aquinoet al. (1998), where a rectangu-
lar potential barrier was considered. Although there is a difference between the
reflection and transmission times, due to the fact that the probability density of
the faster components of the wave packet is greater than the density probability
of the slower components, both converges to the phase time when the Gaussian
momentum distribution tends to a delta function distribution.

By applying the same method to the linear and rectangular barriers, we can
make a direct comparison of the transmission and reflection times for these two
barriers.

In the next section, we present a self-contained summary of the calculations
carried out in de Aquinoet al. (1998) in order to give independence to this paper
and to define notations. In Section 3, the calculations are extended to the case of
a linear potential barrier. The results and discussions are presented in Section 4.
Finally, the conclusions are presented in Section 5.

2. THE RECTANGULAR BARRIER

Consider a particle of energyE incident on a barrier potentialV(x) defined
by

V(x) =
0, x < 0

V0, 0 < x < a
0, x > a

(2.1)

under the condition that int = 0 the probability to find the particle is given by a
Gaussian distribution centered inx(0)= −`, the distribution peak moving with
the group velocityVg. The time evolution of such systems is described by the wave
function9(x, t) (de Aquinoet al., 1998)

9(x, t) = 1√
2π

∫ k0

0
φ(k) e−i (t−t0)E/huk(x) dk (2.2)

whereuk(x) are eigenfunctions of the potentialV(x) and are given by

uk(x) =
u1(x) = A eikx + A′ e−ikx, x < 0

u2(x) = B e−ρx + D eρx, 0 < x < a
u3(x) = C eikx, x > a

(2.3)

with

k =
√

2mE

h2 , k0 =
√

2mV0

h2 e, ρ =
√

k2
0 − k2 (2.4)
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In Eq. (2.2),φ(k) is a Gaussian momentum distribution highly centered around
somek̄ in the interval 0< k̄ < k0

φ(k) = 1(
2πσ 2

k

)1/4 eik` e−(k−k̄)2/4σ 2
k . (2.5)

The strategy to evaluate the reflection and transmission times consists of
writing the incident (I), reflected (R), and transmitted (T) components of9(x, t) as

ψI,R,T(x, t) = 1√
2π

∫ k0

0
φI,R,T(k) ei f I,R,T(k,x,t) dk (2.6)

where the “new momentum distributions”φI,R,T(k) are real functions that carry
thek dependence of the constantsA, A′, andC of Eq. (2.3). Thus, the system time
evolution can be understood by noticing that the integrals in (2.6), for a givenx,
give a greater contribution when the phasesfI,R,T(k, x, t) are stationary (Erd´elyi,
1956), i.e., when

d fI,R,T(k)

dk

∣∣∣∣
k=k̄I,R,T

= 0, (2.7)

the condition in (2.7) generates the equations for the position of the peak of the in-
cident, reflected, and transmitted wave packets, in function of time. TakingA = 1
in (2.3), and taking into account Eq. (2.5), we see that theψI (x, t) component
describes a wave packet centered aroundt = t0 in the positionx = −`, its maxi-
mum moving with the group velocitȳVg = +hk̄/m. The time reflectionτR is then
obtained by finding the instanttR in which the reflected wave packet “emerges” in
x = 0 with group velocity−V̄gR and subtracting the time necessary for the wave
packet peak reach the barrier

τR = tR− m`

hk̄
. (2.8)

The transmission time can be obtained in a similar way.
These quantities result in different values for finite width momentum distri-

butionsφ(k). When the momentum distributionsφ(k) tend to a delta function, the
integrals in (2.6) tend to the stationary monocromatic wave functionsuk(x) and
the transmission and reflection time results are equal to the so-called phase time
τϕ (Hartman, 1962; Wigner, 1955)

τϕ = τ0

k2
0

sinh(2ρa)
kρ − 2ka(k2−ρ2)

k2
0

(sinhρa)2+ ( 2kρ
k2

0

)2 (2.9)

where

τ0 = h/2V0 (2.10)

is the barrier characteristic time.
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3. A LINEAR BARRIER

Consider a particle of energyE < V0 incident, from the region of negative
x, on a potential barrierV(x) defined by

V(x) =


0, x < 0
V0
(
1− x

a

)
, 0 < x < a

0, x > a
(3.1)

Defining the dimensionless quantities

ε = k

k0
and q0 = (k0a)2/3 (3.2)

with k andk0 defined in (2.4), the time-independent Schroedinger equation in the
interval 0< x < a can be written as

∂2ψ(x)

∂x2
= −

(x

a
+ ε2− 1

)
k2

0 ψ(x). (3.3)

In terms of the convenient variable

ξ = ξ (x) = q0

(x

a
+ ε2− 1

)
(3.4)

the Eq. (3.3) reads

∂2ψ(ξ )

∂ξ2
= −ξ ψ(ξ ), (3.5)

whose solutions can be given in terms of Airy functionsAi(−ξ ) and Bi(−ξ )
(Abramovitz and Stegun, 1970). The general solution for a particle incident from
the left on the linear barrier potential (3.1) is then given by

ψk(x) =
ψ1(x) = eikx + A e−ikx, x < 0
ψ2(x) = B Ai(−ξ )+ C Bi(−ξ ), 0 < x < a
ψ3(x) = D eikx, x > a.

(3.6)

Let us introduce the functionsF(ξ ) andG(ξ ) defined by

F(ξ ) = ik Ai(−ξ )− q0

a
Ai ′(−ξ ) (3.7)

G(ξ ) = ikBi(−ξ )− q0

a
Bi ′(−ξ ) (3.8)

where the prime means derivative with respect to the variable−ξ . Continuity con-
dition ofψk and its spacial derivative inx = 0 andx = a determine the constants
A, B, C, andD as

A = A(k) = G∗(ξa)F∗(ξ0)− F∗(ξa)G∗(ξ0)

1
(3.9)
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B = B(k) = −2ikG∗(ξa)

1
(3.10)

C = C(k) = 2ikF∗(ξa)

1
(3.11)

and

D = D(k) = F∗(ξa)G(ξa)− G∗(ξa)F(ξa)

1
e−ika = 2ikq0

πa1
e−ika, (3.12)

where use was made of the WronskianW(Ai, Bi) = 1/π .
In Eqs. (3.9)–(3.12),

1 = G(ξ0)F∗(ξa)− F(ξ0)G∗(ξa) (3.13)

and from (3.4)

ξ0 = ξ (0)= q0(ε2− 1)
(3.14)

ξa = ξ (a) = q0(ε2)

The asterisk in (3.9)–(3.13) means complex conjugate.
Introducing the auxiliary quantities

R1 = ε2[ Ai (−ξ0)Bi (−ξa)− Ai (−ξa)Bi (−ξ0)] (3.15)

R2 = q2
o

(k0a)2
[ A′i (−ξa)B′i (−ξ0)− A′i (−ξ0)B′i (−ξa)] (3.16)

I1 = εqo

k0a
[ Ai (−ξa)B′i (−ξ0)− A′i (−ξ0)Bi (−ξa)] (3.17)

I2 = εqo

k0a
[ A′i (−ξa)Bi (−ξ0)− Ai (−ξ0)B′i (−ξa)] (3.18)

we can rewrite the coefficientA(k) and1 as

A(k) = −NA

1
(3.19)

and

1 = k2
0[(R2− R1)+ i (I1− I2)] (3.20)

with

NA = k2
0[(R1+ R2)+ i (I1+ I2)]. (3.21)

In polar representation,NA and1 take the form

NA = |NA| e−α (3.22)

1 = |1| eiλ (3.23)
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with

|NA| = k2
0

√
(R1+ R2)2+ (I1+ I2)2 (3.24)

tanα = I1+ I2

R1+ R2
(3.25)

and

|1| = k2
0

√
(R2− R1)2+ (I1− I2)2 (3.26)

tanλ = I1− I2

R2− R1
(3.27)

In terms of these quantities, the reflected wave function reads

ψR(x, t) = −|NA|
|1| ei (α−λ) e−ikx e−iω(k)t . (3.28)

Imposing stationary phase condition on (3.28), inx = 0, results

x + hkt

m
+ dλ

dk
− dα

dk

∣∣∣∣
x=0

= 0 (3.29)

From (3.29), we obtain the reflection time

τR = m

hk

(
dα

dk
− dλ

dk

)
. (3.30)

In terms of the characteristic timeτ0, defined in (2.10), and noticing that
∂
∂k = 1

k0

∂
∂ε

, the reflection timeτR can be written as

τR

τ0
= 1

ε

∂

∂ε
(α − λ). (3.31)

The derivative∂α/∂ε can be readily evaluated by noticing that

∂

∂α
(tanα)

∂α

∂ε
= ∂

∂ε

(
I1+ I2

R1+ R2

)
(3.32)

to get

∂α

∂ε
= cos2 α

∂

∂ε

(
I1+ I2

R1+ R2

)
. (3.33)

A little more algebra produces the results

∂α

∂ε
= (R1+ R2) ∂

∂ε
(I1+ I2)− (I1+ I2) ∂

∂ε
(R1+ R2)

|NA|2 (3.34)

∂λ

∂ε
= (R2− R1) ∂

∂ε
(I1− I2)− (I1− I2) ∂

∂ε
(R2− R1)

|1|2 . (3.35)
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The derivatives of the quantitiesR1, R2, I1, and I2 can be obtained from
known relations between the Airy functions and its derivatives (Abramovitz and
Stegun, 1970). The results are

∂R1

∂ε
= 2R1

ε
+ 2ε2k0a(I1+ I2) (3.36)

∂R2

∂ε
= 2k0a

q0
(ξa I1+ ξ0I2) (3.37)

∂ I1

∂ε
= I1

ε
− 2ε2k0aR2− 2ξ0k0a

q0
R1 (3.38)

∂ I2

∂ε
= I2

ε
− 2ε2k0aR2− 2ξak0a

q0
R1. (3.39)

Finally, the transmission time can now be obtained by noticing that the first
term of D(k), Eq. (3.12), is imaginary, so that the phasefT associated with the
transmitted component of9(x, t) is given, apart a constant phase, by

fT = −ka− λ+ kx− ω(k)t (3.40)

and the condition of stationary phase forfT in x = a leads to the result

τT

τ0
= −1

ε

∂λ

∂ε
. (3.41)

4. RESULTS AND DISCUSSION

For comparison, we show in Fig. 1 the behavior ofτϕ , Eq. (2.9), in units of
τ0, for a rectangular barrier, in function of the barrier widtha, for some values of
k. In this figure, we can observe the stabilization ofτϕ for very thick barriers, the

Fig. 1. Phase timeτφ in units of τ0 for a rectangular barrier. (a) Thick solid line:k = 0.1k0; thin
solid line: k = 0.2k0; dashed line:k = 0.3k0; long dashed line:k = 0.4k0. (b) Thick solid line:
k = 0.5k0; thin solid line:k = 0.6k0; dashed line:k = 0.7k0. (c) Dashed line:k = 0.98k0; thin solid
line: k = 0.94k0; thick solid line:k = 0.8k0.



P1: GXB/GCQ/ P2:

International Journal of Theoretical Physics [ijtp] pp464-ijtp-372232 May 30, 2002 10:33 Style file version May 30th, 2002

884 Goto, Iwamoto, de Aquino, and Aguilera-Navarro

Fig. 2. Reflection timeτR, in units ofτ0, for a linear barrier. (a) Thick solid line:k = 0.1k0; thin solid
line: k = 0.2k0; dashed line:k = 0.3k0; long dashed line:k = 0.4k0. (b) Thick solid line:k = 0.5k0;
thin solid line:k = 0.6k0; dashed line:k = 0.7k0. (c) Thick solid line:k = 0.98k0; thin solid line:
k = 0.94k0; dashed line:k = 0.8k0.

so-called Hartman effect (Hartman, 1962). We also observe the existence of sharp
peaks in the region of small values ofk.

In Fig. 2, for the same set of values ofk used in Fig. 1, we show the reflection
time τR in units ofτ0, Eq. (3.31), for the linear barrier potential. The stabilization
of τR for very thick barrier is not evident in this interval of values for the parameter
a, for 0.5k0 < k < k0, but can be observed in Fig. 3, where the oscilating behavior
of τR with a, for k ≈ 0.94k0 it is not apparent due to the figure scale.

Figure 4 displays the transmission timeτT in units ofτ0, Eq. (3.41), for the
same values ofk considered in the analysis of the reflection time.

5. CONCLUSION

There are some basic differences that must be noticed between the reflection
time evaluated for linear and rectangular barrier potentials. Firstly, while in the

Fig. 3. Reflection timeτR, in units of τ0, for a linear
barrier. Thin solid line:k = 0.98k0; thick solid line:k =
0.94k0; dashed line:k = 0.8k0.
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Fig. 4. Transmission timeτT, in units ofτ0, for a linear barrier. (a) Thick
solid line: k = 0.1k0; thin solid line:k = 0.2k0; dashed line:k = 0.4k0.
(b) Thick solid line:k = 0.5k0; thin solid line: k = 0.6k0; dashed line:
k = 0.7k0. (c) Thick solid line:k = 0.8k0; thin dotted line:k = 0.98k0;
thin solid line:k = 0.94k0; dashed line:k = 0.2k0. (d) Thick solid line:
k = 0.94k0; thin solid line:k = 0.98k0.

case of a rectangular barrier the stabilization ofτϕ occurs in the whole range of
k, for relatively small values of the barrier thicknessa, the stabilization ofτR, for
k & 0.8k0, only occurs for large values ofa.

On the other hand, the existence of a maximum for the transmission timeτR

is a general characteristic in the whole range ofk for linear barrier. The same is
not true for rectangular barrier whereτR presents a maximum only in the region
of smallk.

The second point we address is that, for both barrier cases,τR andτϕ present
variations of the same order for the same values ofk but for different values of the
barrier thicknessa.

Another interesting aspect, related with the reflection time, is that the stabi-
lization of τϕ in the case of the linear barrier can be derived by taking the limit
of largea in expression (2.9). The resulting expression gives the reflection time
associated with a particle incident on a rectangular barrier of infinite thickness
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(step barrier) (Cohen-Tanoudjiet al., 1977)(
τϕ

τ0

)
a→∞
= 2k2

0√
k2
(
k2

0 − k2
) , (5.1)

and has the smaller stabilization value (τϕ/τ0)min for k = √0.5k0, and is equal to 4,
as can be seen directly from Eq. (5.1). A corresponding analysis of the plottings of
the reflection times for a linear barrier shows that the minimum stabilization value
of τR/τ0 occurs for the same value ofk, and is also equal to 4.

As a last observation on the reflection times, the quantityτR associated with
the linear barrier presents an increasing oscillating behavior for 0.9k0 < k < k0.
This behavior is smoothened when we consider the transmission times. For a
particle incident on a rectangular barrier, the transmission timeτT tends to the
phase timeτϕ in the limit of large width, and it does not stabilize for any values of
k in the case of a linear barrier, as can be seen in Fig. 4.
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