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Reflection and Transmission Times Through
a Linear Potential
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Reflection and transmission times through a linear potential is studied by using the
stationary phase method. The incident particle is described by a wave packet constructed
from a momentum distributiof(k’ — k) highly concentrated around a fixed valkie

The way the reflection and transmission times are calculated is similar to the way the
phase time, is defined for a rectangular potential.
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1. INTRODUCTION

The purpose of this paper is not to dive into the turbulent water of the con-
troversies that plague the subject of transversal or tunneling time through a bar-
rier. Very good and comprehensive papers that properly address this issue can
be found in the literature. Among them, we cite the review papers by Hauge
and Stgvneng (1989), Landauer and Martin (1994), and, more recently, Muga and
Leavens (2000). Despite all the efforts made up to now, no consensus was achieved
yet on how to define and evaluate tunneling times.

By using the stationary phase method (&yi'1956), we discuss the trans-
mission and reflection times of a particle of massnd energ)E incident on a
linear Schottky kind potential barrier of maximum intensity> E = hk?/2m.

This problem is particularly interesting to researchers in fields like heterostructures
or multiple-quantum-well structures.

The particle is described by a wavepacket constructed at a distarce?
before the location of the potential. We take a Gaussian momentum distribution
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highly concentrated around a defined valulk.dthis practice reduces considerably
the difficulties inherent to nonconcentrated momentum distributions.

The way to obtain the transmission and reflection times is similar to the
process to obtain the phase timgin de Aquinoet al. (1998), where a rectangu-
lar potential barrier was considered. Although there is a difference between the
reflection and transmission times, due to the fact that the probability density of
the faster components of the wave packet is greater than the density probability
of the slower components, both converges to the phase time when the Gaussian
momentum distribution tends to a delta function distribution.

By applying the same method to the linear and rectangular barriers, we can
make a direct comparison of the transmission and reflection times for these two
barriers.

In the next section, we present a self-contained summary of the calculations
carried out in de Aquinet al. (1998) in order to give independence to this paper
and to define notations. In Section 3, the calculations are extended to the case of
a linear potential barrier. The results and discussions are presented in Section 4.
Finally, the conclusions are presented in Section 5.

2. THE RECTANGULAR BARRIER

Consider a particle of enerdy incident on a barrier potentid (x) defined
by

0, x<0O
V(X)=1 VW, O<x<a (2.1)
0, x>a

under the condition that ih= 0 the probability to find the particle is given by a
Gaussian distribution centered xf0) = —¢, the distribution peak moving with
the group velocityy. The time evolution of such systems is described by the wave
function ¥ (x, t) (de Aquinoet al,, 1998)

W(x, t _ 1 © k) e 1 (t-0)E/hy, (x) dk 2.2
(%, 1) Nzl #(K) k(X) (2.2)

whereug(x) are eigenfunctions of the potentM(x) and are given by

ur(x) = Ad + Ae ™ x<0
Uk(X) = { U2(X) =Be”*+De”, 0<x<a (2.3)
uz(x) = C €k, X > a

2mE 2m\
K= /%, o=/ ':Zoe, p= K2k (2.4)

with
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In Eq. (2.2),¢(K) is a Gaussian momentum distribution highly centered around
somek in the interval 0< k < kg

1 ) —
pk) = ——5 & g (kK?/40¢ (2.5)
(220)
The strategy to evaluate the reflection and transmission times consists of
writing the incident (1), reflected (R), and transmitted (T) componenis(af t) as

1 ‘o ifLrT(kX,t)
el ) = —— /0 B r(K) €Nm XD g (2.6)

where the “new momentum distributiongy r t(k) are real functions that carry
thek dependence of the constartsA’, andC of Eq. (2.3). Thus, the system time
evolution can be understood by noticing that the integrals in (2.6), for a given
give a greater contribution when the phadeg t(k, x, t) are stationary (Erelyi,
1956), i.e., when

dfir,7(K)
LR TR =0, 27
dk k=kir T ( )

the condition in (2.7) generates the equations for the position of the peak of the in-
cident, reflected, and transmitted wave packets, in function of time. Takiadl

in (2.3), and taking into account Eq. (2.5), we see thatyhe&, t) component
describes a wave packet centered arauadty in the positionx = —¢, its maxi-

mum moving with the group velocityy = +hk/m. The time reflectionr is then
obtained by finding the instaty in which the reflected wave packet “emerges” in

x = 0 with group velocity—Vyr and subtracting the time necessary for the wave
packet peak reach the barrier

m¢
wRr=1r hk " (28)
The transmission time can be obtained in a similar way.

These quantities result in different values for finite width momentum distri-
butionsg (k). When the momentum distributiogigk) tend to a delta function, the
integrals in (2.6) tend to the stationary monocromatic wave functiQ(s) and
the transmission and reflection time results are equal to the so-called phase time
7, (Hartman, 1962; Wigner, 1955)

2sinh(pa) 2ka(k’®—p?)
kO ko kg

T, = To (2.9

. 2ko\ 2
(sinhpa)? + (%zp)
where
T0 = h/ZVo (210)

is the barrier characteristic time.
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3. ALINEAR BARRIER

Consider a particle of enerdy < Vy incident, from the region of negative
X, on a potential barriey (x) defined by

0, Xx<0
V(x)=1{ Vo(1-%), O<x<a (3.1)
0, X > a

Defining the dimensionless quantities

£ = % and qo = (koa)?® (3.2)

with k andkg defined in (2.4), the time-independent Schroedinger equation in the
interval 0< x < a can be written as

82
81/;(2x) - (g 62— 1) K Y. 3.3)
In terms of the convenient variable
=609 =ao (5 +e2- 1) (3.4)
the Eq. (3.3) reads
82
= - v) 35)

whose solutions can be given in terms of Airy functioAg—&) and Bi(—¢)
(Abramovitz and Stegun, 1970). The general solution for a particle incident from
the left on the linear barrier potential (3.1) is then given by

Ya(X) = € + Ae kX, X <0
Yk(X) = { Ya(x) = BAi(—§) + CBi(—£), 0<x<a (3.6)
Ya(x) = D ek, X > a.
Let us introduce the functiors(¢) andG(¢) defined by
FE) = IkAI(=§) = LAI(-5) 37)
G(&) = IkBi(~§) — 2 Bi'(~§) 3.9

where the prime means derivative with respect to the variableContinuity con-
dition of ¥ and its spacial derivative in = 0 andx = a determine the constants
A, B, C, andD as

G*(§a) F*(§0) — F*(62)G"(%0)
A

A= AK) = (3.9)
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—2ikG*(5a)

B = B(k) = — (3.10)
C=CK) = ZikFA*(&‘) (3.11)
and
D= D(k) _ F*(éa)G(éa) ; G*(éa)':(éa) e—ika — i;‘f e—ika, (3_12)
where use was made of the WronskiaifAi, Bi) = 1/x.
In Egs. (3.9)—(3.12),
A = G(§0)F*(6a) — F(60)G*(éa) (3.13)
and from (3.4)
=£(0)=0go(s* — 1
& = £(0) QO(82 ) (3.19)
£a = £(a) = qo(e?)
The asterisk in (3.9)—(3.13) means complex conjugate.
Introducing the auxiliary quantities
Ry = e°[ Al (—£0)Bi(—&a) — Ai(—£a) Bi(—£0)] (3.15)
% / : :
Ry = (koa)z[Ai(_ga) Bi(—£0) — Ai(—£0)B/(—£a)] (3.16)
= %m(_ga) B/(—£0) — A/(—£0)Bi(~£a)] (3.17)
1o = o IA () Bi(—0) — A(~£0)BI(~£a)] (3.18)
we can rewrite the coefficier(k) andA as
Ak) = N (3.19)
and
A =K(Ry— R)) +i(l1 — I5)] (3.20)
with
Na = K5[(Ry + Ro) +i(l1 + 12)]. (3.21)
In polar representatioiy, and A take the form
Na = |[Nal€7¢ (3.22)

A = |A| € (3.23)
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with
INAl = K3v/(Ry + R)2 + (11 + 12)2 (3.24)
| |
tang = 1+ 2 (3.25)
Ri+ R
and
Al = KV(Re = R + (11 — )2 (3.26)
I1— |
tan) = — = (3.27)
R-R
In terms of these quantities, the reflected wave function reads
Nal - _ .
Yr(X, t) = __||AA|| gl(@=4) grikx gmio(l)t (3.28)
Imposing stationary phase condition on (3.28)xig 0, results
hkt di» do
L= =0 3.29
X T ak T dk| (3:29)
From (3.29), we obtain the reflection time
m /da di
=——=-—=. 3.30
R~ hk (dk dk) (3.30)

In terms of the characteristic timg, defined in (2.10), and noticing that

= %% the reflection timeg can be written as
T 10
R % (a—2). (3.31)
70 e de

The derivativedar/de can be readily evaluated by noticing that

a0 Jo d I14+ 1,
—(t — = — 3.32
5o BN 50 = 5e (R1+ R2> (3.32)
to get
o B 1417
— =coSa— ) 3.33
e co “ag R+ R ( )

A little more algebra produces the results
do (Rt Ro)gp(li+12) = (li+ 12) 5 (Ru + Ro)
de INal?

92 (Re— Rz (li—12) = (1= 12)5;(Re = Ry)
de [A]2 '

(3.34)

(3.35)
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The derivatives of the quantitieR;, Ry, 11, and I, can be obtained from

known relations between the Airy functions and its derivatives (Abramovitz and

Stegun, 1970). The results are
Ry 2R,

= "= 4+ 2¢%koa(ly + I2) (3.36)

de e

R 2

8—2 = El(~‘§a|1 + &l2) (3.37)
& Jo

M _ 11 5o ap, Zo0ap (3.38)
oe £ Jo

Mo _ 12 5o g, Zakap (3.39)
0e £ fo

Finally, the transmission time can now be obtained by noticing that the first

term of D(k), Eq. (3.12), is imaginary, so that the phaeassociated with the
transmitted component d# (x, t) is given, apart a constant phase, by

fr = —ka— A + kx — o(k)t (3.40)
and the condition of stationary phase figrin x = a leads to the result
19x
o2 (3.41)
T0 e de

4. RESULTS AND DISCUSSION

For comparison, we show in Fig. 1 the behaviorgfEq. (2.9), in units of
70, for a rectangular barrier, in function of the barrier widthfor some values of
k. In this figure, we can observe the stabilizatiorrpfor very thick barriers, the
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@ 40.0 [4] ® 100 |- - —
E £ 30 E yd
g 300 o @ /
© 9 20 «© /
P ag = <
o 20.0 [-% a 50 -
10.0 1.0
1 1 1 L 1 L 1

ol L 1.1 o0 b1 : 0.0 :
00 20 40 60 80 100 00 20 40 60 80 10.0 00 100 200 300

ak, ak, ak,

Fig. 1. Phase timer, in units of 7o for a rectangular barrier. (a) Thick solid link:= 0.1ko; thin
solid line: k = 0.2kp; dashed linek = 0.3kp; long dashed linek = 0.4kp. (b) Thick solid line:
k = 0.5kp; thin solid line:k = 0.6ko; dashed linek = 0.7kg. (c) Dashed linek = 0.98kp; thin solid
line: k = 0.94kg; thick solid line:k = 0.8kg.
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Fig. 2. Reflection timerg, in units ofzg, for a linear barrier. (a) Thick solid liné: = 0.1ko; thin solid
line: k = 0.2kp; dashed linek = 0.3ko; long dashed linek = 0.4kp. (b) Thick solid line:k = 0.5kp;
thin solid line:k = 0.6ko; dashed linek = 0.7kp. (c) Thick solid line:k = 0.98ko; thin solid line:
k = 0.94kq; dashed linek = 0.8kg.

so-called Hartman effect (Hartman, 1962). We also observe the existence of sharp
peaks in the region of small valueslaf

In Fig. 2, for the same set of valueslofised in Fig. 1, we show the reflection
time 7y in units of rp, EQ. (3.31), for the linear barrier potential. The stabilization
of 1 for very thick barrier is not evident in this interval of values for the parameter
a, for 0.5, < k < kg, but can be observed in Fig. 3, where the oscilating behavior
of r with a, for k ~ 0.94k; it is not apparent due to the figure scale.

Figure 4 displays the transmission timein units of 7, Eq. (3.41), for the
same values df considered in the analysis of the reflection time.

5. CONCLUSION

There are some basic differences that must be noticed between the reflection
time evaluated for linear and rectangular barrier potentials. Firstly, while in the

15.0 —T T

(%)

10.0

reflection time

5.0

0.0 P S R Fig. 3. Reflection timerg, in units of 7o, for a linear
0.0 2000 4000 6000 parrier. Thin solid linek = 0.98kg; thick solid line:k =
ak, 0.94Ko; dashed linek = 0.8ko.
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Fig. 4. Transmission timer, in units of rp, for a linear barrier. (a) Thick
solid line: k = 0.1kp; thin solid line: k = 0.2kg; dashed linek = 0.4kg.
(b) Thick solid line:k = 0.5ko; thin solid line: k = 0.6kp; dashed line:
k = 0.7ko. (c) Thick solid line:k = 0.8kp; thin dotted line:k = 0.98ko;
thin solid line: k = 0.94ko; dashed linek = 0.2kp. (d) Thick solid line:
k = 0.94ko; thin solid line:k = 0.98ko.

case of a rectangular barrier the stabilizatiorrpbccurs in the whole range of
k, for relatively small values of the barrier thicknessghe stabilization otg, for
k > 0.8Kg, only occurs for large values af

On the other hand, the existence of a maximum for the transmissiorngime
is a general characteristic in the whole rang& &ér linear barrier. The same is
not true for rectangular barrier whetg presents a maximum only in the region
of smallk.

The second point we address is that, for both barrier cagesdz, present
variations of the same order for the same valudshait for different values of the
barrier thickness.

Another interesting aspect, related with the reflection time, is that the stabi-
lization of z,, in the case of the linear barrier can be derived by taking the limit
of largea in expression (2.9). The resulting expression gives the reflection time
associated with a particle incident on a rectangular barrier of infinite thickness
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(step barrier) (Cohen-Tanoudit al.,, 1977)

(%)aﬁm N kz(igé_ k2)’ e

and has the smaller stabilization valag/zo)min for k = V/0.5ko, and is equal to 4,
as can be seen directly from Eq. (5.1). A corresponding analysis of the plottings of
the reflection times for a linear barrier shows that the minimum stabilization value
of 1r/ 1o Occurs for the same value kfand is also equal to 4.

As a last observation on the reflection times, the quantitgssociated with
the linear barrier presents an increasing oscillating behavior.8b & k < ko.
This behavior is smoothened when we consider the transmission times. For a
particle incident on a rectangular barrier, the transmission timeends to the
phase time, in the limit of large width, and it does not stabilize for any values of
k in the case of a linear barrier, as can be seen in Fig. 4.
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